Людмила Бритько
Семинар «Средства развития элементарных математических представлений дошкольников»
▼ Скачать + Заказать документы
Семинар – практикум
«Средства развития элементарных математических представлений»
Составила: заместитель заведующего по основной деятельности Бритько Людмила Вячеславовна
Цель (слайд)
Публикация «Семинар „Средства развития элементарных математических представлений дошкольников“» размещена в разделах
- Математика. Математические представления, ФЭМП
- Методические материалы для педагогов и воспитателей
- Работа. Педсоветы, семинары, тренинги для педагогов
- Развитие ребенка. Материалы для педагогов
- Семинар, практикум
- Темочки
- Конкурс для воспитателей и педагогов «Лучшая методическая разработка» июль 2017
Процесс формирования элементарных математических представлений осуществляется под руководством педагога в результате систематически проводимой работы на занятиях и вне их, направленной на ознакомление детей с количественными, пространственными и временными отношениями с помощью разнообразных средств. Дидактические средства являются своеобразными орудиями труда педагога и инструментами познавательной деятельности детей.
В настоящее время в практике работы детских дошкольных учреждений широко распространены следующие средства (смотреть на слайде)
Слайд 4,5
При формировании элементарных математических представлений средства обучения выполняют разнообразные функции: (смотреть на слайде)
Слайд 6
Основным средством обучения является комплект наглядного дидактического материала для занятий.
В него входит следующее:(смотреть на слайде)
При формировании элементарных математических представлений на занятиях наиболее широко используются реальные предметы и их изображения. С возрастом детей происходят закономерные изменения в использовании отдельных групп дидактических средств : наряду с наглядными средствами применяется опосредованная система дидактических материалов.
Дидактические средства должны меняться не только с учетом возрастных особенностей, но в зависимости от соотношения конкретного и абстрактного на разных этапах усвоения детьми программного материала. Например, на определенном этапе реальные предметы могут быть заменены числовыми фигурами, а они в свою очередь цифрами и т. п.
Для каждой возрастной группы имеется свой комплект наглядного материала. Это — комплексное дидактическое средство, обеспечивающее формирование элементарных математических представлений в условиях целенаправленного обучения на занятиях, Благодаря ему возможно решение практически всех программных задач. Наглядный дидактический материал рассчитан на определенное содержание, методы, фронтальные формы организации обучения, соответствует возрастным особенностям детей, отвечает разнообразным требованиям: научным, педагогическим, эстетическим, санитарно-гигиеническим, экономическим и т. д. Он используется на занятиях при объяснении нового, его закреплении, для повторения пройденного и при проверке знаний детей, т. е. на всех этапах обучения.
Слайд7,8
Обычно используют наглядный материал двух видов (слайд7)
Слайд9
К демонстрационным материалам относятся :(смотреть на слайде)
Деление наглядного дидактического материала на демонстрационный и раздаточный весьма условно. Одни и те же средства помогут использоваться и для показа, и для упражнений.
Следует учитывать размеры пособий: раздаточный материал должен быть таким, чтобы сидящие рядом дети могли удобно располагать его на столе и не мешать друг другу во время работы. Поскольку демонстрационный материал предназначен для показа всем детям, он по всем параметрам крупнее, чем раздаточный. Существующие рекомендации относительно размеров наглядных дидактических материалов при формировании элементарных математических представлений детей носят эмпирический характер, строятся на опытной основе. В этом отношении определенная стандартизация крайне необходима и может быть достигнута в результате специальных научных исследований. Пока отсутствует единообразие в указании размеров в методической литературе и в выпускаемых промышленностью комплектах, следует практически устанавливать наиболее приемлемый вариант И в каждом конкретном случае, ориентироваться на лучший педагогический опыт.
Раздаточный материал требуется в больших количествах в расчете на каждого ребенка, демонстрационный — один на группу детей. На четырехгрупповой детский сад демонстрационный мате риал подбирают так : 1—2 комплекта каждого названия, а раздаточный — по 25 комплектов каждого названия на весь детский сад, чтобы полностью обеспечить одну группу.
Тот и другой материал должен быть художественно оформлен
Слайд11
В оборудование для самостоятельных игр и занятий могут включаться:(смотреть на слайде)
Все эти средства лучше всего поместить непосредственно в зоне самостоятельной познавательной и игровой деятельности, периодически их следует обновлять, учитывая детские интересы и склонности. Эти средства используются в основном в часы игр, но могут применяться и на занятиях. К ним необходимо обеспечить свободный доступ ребят и их широкое использование.
Слайд12,13,14
Одним из средств формирования у детей дошкольного возраста элементарных математических представлений являются занимательные игры, упражнения, задачи, вопросы. Этот занимательный математический материал чрезвычайно разнообразен по содержанию, форме, развивающему и воспитательному влиянию.
В последующие годы был замечен спад внимания к занимательному математическому материалу, и вновь повысился интерес к нему в последние 10—15 лет в связи с поисками новых средств обучения, которые в наибольшей степени способствовали бы выявлению и реализации потенциальных познавательных- возможностей каждого ребенка.
Из занимательного математического материала в работе с дошкольниками могут использоваться самые простые его виды: (смотреть на слайде)
Этим далеко не исчерпывается весь занимательный математический материал, который может использоваться в работе с детьми. Перечислены отдельные его виды.
Занимательный математический материал по своей структуре близок детской игре: дидактической, сюжетно-ролевой, строительно-конструктивной, драматизации. Как и дидактическая игра, он прежде всего направлен на развитие умственных способностей, качеств ума, способов познавательной деятельности. Познавательное его содержание, органически сочетаясь с занимательной формой, становится действенным средством умственного воспитания, непреднамеренного обучения, наилучшим образом соответствуя возрастным особенностям ребенка-дошкольника. Многие задачи-шутки, головоломки, занимательные упражнения и вопросы, потеряв авторство, передаются из поколения в поколение, как и народные дидактические игры. Наличие правил, организующих порядок действий, характер наглядности, возможность соревнования, во многих случаях ярко выраженный результат роднят занимательный материал с дидактической игрой. Одновременно он содержит и элементы других видов игр : роли, сюжет, содержание, отражающее какое-либо жизненное явление, действия с предметами, решение конструктивной задачи, любимые образы сказок, рассказов, мультфильмов, драматизацию — все это свидетельствует о многосторонних связях занимательного материала с игрой. Он как бы вбирает в себя многие ее элементы, черты и особенности: эмоциональность, творчество, самостоятельный и самодеятельный характер.
Слайд15,16
К дидактическим средствам относятся пособия для воспитателя детского сада, в которых раскрывается система работы по формированию элементарных математических представлений. Основное их назначение — помочь воспитателю осуществить на практике предматематическую подготовку детей к школе.
К пособиям для воспитателя детского сада как дидактическому средству предъявляются высокие требования. Они должны:(смотреть на слайде)
Практическая направленность пособий, служащих настольной книгой воспитателя, отражается на их структуре и содержании
Слайд17
В процессе формирования элементарных математических представлений у дошкольников педагог использует разнообразные методы обучения: практические, наглядные, словесные, игровые. При выборе метода учитывается ряд факторов: программные задачи, решаемые на данном этапе, возрастные и индивидуальные особенности детей, наличие необходимых дидактических средств и т. д.
Постоянное внимание педагога к обоснованному выбору методов и приемов, рациональному использованию их в каждом конкретном случае обеспечивает:
• успешное формирование элементарных математических представлений и отражение их в речи;
• умение воспринимать и выделять отношения равенства и неравенства (по числу, размеру, форме, последовательную зависимость (уменьшение или увеличение по размер, числу, выделять количество, форму, величину как общий признак анализируемых объектов, определять связи и зависимости :
• ориентировку детей на применение освоенных способов практических действий (например, сравнения путем сопоставления, счета, измерения) в новых условиях и самостоятельный поиск практических способов выявления, обнаружения значимых в данной ситуации признаков, свойств, связей. К примеру, в условиях игры выявить порядок следования, закономерность чередования признаков, общность свойств
В формировании элементарных математических представлений ведущим является практический метод. Суть его заключается в организации практической деятельности детей, направленной на усвоение строго определенных способов действий с предметами или их заменителями (изображениями, графическими рисунками, моделями и т. д.).
Характерные особенности практического метода при формировании элементарных математических представлений :
• выполнение разнообразных практических действий, служащих основой для умственной деятельности;
• широкое использование дидактического материала;
• возникновение представлений как результата практических действий с дидактическим материалом :
• выработка навыков счета, измерение и вычисления в самой элементарной форме;
• широкое использование сформированных представлений и освоенных действий в быту, игре, труде, т. е. в разнообразных видах деятельности.
Данный метод предполагает организацию специальных упражнений, которые могут предлагаться в форме задания, организовываться как действия с демонстрационным материалом или протекать в виде самостоятельной работы с раздаточным материалом.
При формировании элементарных математических представлений игра выступает как самостоятельный метод обучения. Но ее можно отнести и к группе практических методов, имея в виду особую значимость разного вида игр в овладении разными практическими действиями, такими, как составление целого из частей, рядов фигур, счет, наложение и приложение, группировка, обобщение, сравнение и др.
Наиболее широко используются дидактические игры. Благодаря обучающей задаче, облеченной в игровую форму (игровой замысел, игровым действиям и правилам ребенок непреднамеренно усваивает определенное познавательное содержание. Все виды дидактических игр (предметные, настольно-печатные, словесные) являются эффективным средством и методом формирования элементарных математических представлений. Предметные и словесные игры проводятся на занятиях по математике и вне их. Настольно-печатные, как правило, — в свободное от занятий время.
Наглядные и словесные методы при формировании «элементарных» математических представлений не являются самостоятельными, они сопутствуют практическим и игровым методам. Это отнюдь не умаляет их значения.
Слайд18
В детском саду широко используются приемы, относящиеся к наглядным, словесным и практическим методам и применяемые в тесном единстве друг с другом:
1. Показ (демонстрация) способа действия в сочетании с объяснением или образец воспитателя. Это основной прием обучения, он носит наглядно-практически-действенный характер, выполняется с привлечением разнообразных дидактических средств, дает возможность формировать навыки и умения у детей. К нему предъявляются следующие требования:
• четкость, расчлененность показа способов действия;
• согласованность действий со словесными пояснениями;
• точность, краткость и выразительность речи, сопровождающей показ:
• активизация восприятия, мышления и речи детей.
2. Инструкция для выполнения самостоятельных упражнений. Этот прием связан с показом воспитателем способов действия и вытекает из него. В инструкции отражается, что и как надо делать, чтобы получить необходимый результат. В старших группах инструкция дается полностью до начала выполнения задания, в младших — предваряет каждое новое действие.
3. Пояснения, разъяснения, указания. Эти словесные приемы используются воспитателем при демонстрации способа действия или в холе выполнения детьми задания с целью предупреждения ошибок, преодоления затруднений и т. д. Они должны быть конкретными, короткими и образными.
Показ уместен во всех возрастных группах при ознакомлении с новыми действиями (приложение, измерение, но при этом необходима активизация умственной деятельности, исключающая прямое подражание. В ходе освоения нового действия, формирования умения считать, измерять желательно избегать повторного показа Освоение действия и совершенствование его осуществляется под влиянием словесных приемов: пояснения, указания, вопросов. Одновременно идет освоение речевого выражения способа действия.
4. Один из основных приемов формирования элементарных математических представлений во всех возрастных группах — вопросы к детям. В педагогике принята следующая классификация вопросов:
Вопросы активизируют восприятие, память, мышление, речь детей, обеспечивают осмысление и усвоение материала. При формировании элементарных математических представлений наиболее значима серия вопросов: от более простых, направленных на описание конкретных признаков, свойств предмета, результатов практических действий, т. е констатирующих, к более сложным, требующим установления связей, отношений, зависимостей, их обоснования и объяснения, использования простейших доказательств. Чаше всего такие вопросы задаются после демонстрации воспитателем образца или выполнения упражнений детьми.
Разные по характеру вопросы вызывают различный тип познавательной деятельности: от репродуктивной, воспроизводящей изученный материал, до продуктивной, направленной на решение проблемных задач.
Основные требования к вопросам как методическому приему:
• точность, конкретность, лаконизм:
• логическая последовательность;
• разнообразие формулировок, т. е. об одном и том же следует спрашивать по-разному.
• оптимальное соотношение репродуктивных и продуктивных вопросов в зависимости от возраста детей и изучаемого материала;
• вопросы должны будить мысль ребенка, развивать его мышление, заставлять задуматься, выделить требуемое, провести анализ, сравнение, сопоставление, обобщение;
• количество вопросов должно быть небольшим, но достаточным, чтобы достичь поставленную дидактическую цель;
• следует избегать подсказывающих и альтернативных вопросов.
Воспитатель обычно задает вопрос всей группе, а отвечает на него вызванный ребенок. В отдельные случаях возможны хоровые ответы, особенно в младших группах. Детям необходимо дать возможность обдумать ответ.
Старших дошкольников следует учить формулировать вопросы самостоятельно. В конкретной ситуации, используя дидактический материал, воспитатель предлагает детям спросить о количестве предметов, их порядковом месте, о размере, форме, способе измерения и т. д.
Ответы детей должны быть:
• краткими или полными, в зависимости от характера вопроса;
• самостоятельным, осознанными;
• точными, ясными, достаточно громкими;
• грамматически правильными (соблюдение порядка слов, правил их согласования, использование специальной терминологии).
В pa6oтe с дошкольниками взрослому приходится часто прибегать к приему переформулировки ответа, давая его правильный образец и предлагая повторить. Например: «На полке грибов четыре», — говорит малыш. «На полке четыре гриба», уточняет воспитатель.
5. Контроль и оценка. Эти приемы взаимосвязаны. Контроль осуществляется через наблюдение за процессом выполнения детьми заданий, результатами их действий, ответами. Данные приемы сочетаются с указаниями, пояснениями, разъяснениями, демонстрацией способов действий взрослым в качестве образца, непосредственной помощью, включают исправление ошибок.
Педагог осуществляет исправление ошибок в ходе индивидуальной и коллективной работы с детьми. Исправлению подлежат практически действенные и речевые ошибки Взрослый разъясняет их причины, дает образец или в качестве примера использует действия, ответы других ребят. Постепенно воспитатель начинает сочетать контроль с самои взаимоконтролем. Зная типичные ошибки, которые допускают дети при счете, измерении, простейших вычислениях и т. д., педагог осуществляет профилактическую работу.
Оценке подлежат способы и результаты действий, поведение ребят Оценка взрослого, приучающего ориентироваться на образец, начинает сочетаться с оценкой товарищей и самооценкой. Этот прием используется по ходу и в конце упражнения, игры, занятия.
Применение контроля и оценки имеет свою специфику в зависимости от возраста детей и степени овладения ими знаниями и способами действий. Контроль постепенно переносится на результат, опенка становится более дифференцированной и содержательной. Эти приемы, кроме обучающей, выполняют и воспитательную функцию: помогают воспитать доброжелательное отношение к товарищам, желание и умение помочь им и т. д.
6. В ходе формирования элементарных математических представлений у дошкольников сравнение, анализ, синтез, обобщение выступают не только как познавательные процессы (операции, но и как методические приемы, определяющие тот путь, но которому движется мысль ребенка в процессе учения.
В основе сравнения лежит установление сходства и различия между объектами. Дети сравнивают предметы по количеству, форме, величине, пространственному расположению, интервалы времени — по длительности и т. д. Вначале их учат сравнивать минимальное количество предметов. Затем количество предметов постепенно увеличивают, а степень контрастности сопоставляемых признаков соответственно уменьшают.
Анализ и синтез как методические приемы выступают в единстве. Примером их использования может служить формирование у детей представлений о «много» и «один», которые возникают под влиянием наблюдения и практических действий с предметами.
Воспитатель вносит в группу сразу большое количество одинаковых игрушек — столько, сколько детей. Раздает по одной игрушке каждому малышу, а затем собирает их вместе. На глазах у ребят группа предметов дробится на отдельности, а из них вновь воссоздается целое.
На основе анализа и синтеза детей подводят к обобщению, в котором обычно суммируются результаты всех наблюдений и действий. Эти приемы направлены на осознание количественных, пространственных и временных отношений, на выделение главного, существенного. Обобщение делается в конце каждой части и всего занятия. В начале обобщает воспитатель, а затем — дети.
Сравнение, анализ, синтез, обобщение осуществляются на наглядной основе с привлечением разнообразных дидактических средств. Наблюдения, практические действия с предметами, отражение их результатов в речи, вопросы к детям являются внешним выражением этих методических приемов, которые тесно между собой связаны и используются чаше всего в комплексе.
7. В методике формирования элементарных математических представлений некоторые специальные способы действий, ведущие к формированию представлений и освоению математических отношении, выступают в роли методических приемов. Это приемы наложения и приложения, обследования формы предмета, «взвешивания» предмета «на руке», введение фишек — эквивалентов, присчитывания и отсчитывания по единице и т. д.
Этими приемами дети овладевают в процессе показа, объяснения, выполнения упражнений и в дальнейшем прибегают к ним с целью проверки, доказательства, в объяснениях и ответах, в играх и других видах деятельности.
8. Моделирование — наглядно-практический прием, включающий в себя создание моделей и их использование с целью формирования элементарных математических представлений у детей. В настоящее время положено лишь начало теоретической и конкретно-методической разработке этого приема, являющегося чрезвычайно перспективным в силу следующих факторов:
Слайд18
Думаю, вы согласитесь с тем, что успех занятия во многом зависит от компетентности педагога в той или иной области знаний. Компетентный педагог должен владеть определённой терминологией Методика ФЭМП имеет специфическую, чисто математическую терминологию.
Основные математические понятия вы видите на экране. (Слайд 19)
Очень важно в этих понятиях хорошо разбираться, понимать их, так как «небрежное обращение с научными терминами обычно оборачивается против тех, кто не утруждает себя поиском их точного толкования». (Слайд 20)
Множества рассматривают как. (слайд).
Множества состоят не только из предметов, а из звуков, движений, чисел. Всё это называется элементами множества.
(Слайд 21) Число – это общая неизменная категория множества, которая является показателем мощности множества. Это лишь звуковое обозначение.
Цифры — система знаков (“буквы”) для записи чисел (“слов”) (числовые знаки). Слово “цифра” без уточнения обычно означает один из следующих десяти знаков: 0 1 2 3 4 5 6 7 8 9 (т. н. “арабские цифры”). Сочетания этих цифр порождают дву-(и более) значные числа.
(Слайд 22)Счётная деятельность рассматривается как деятельность с конкретными элементами множества, при которых устанавливается взаимосвязь между предметами и числительными. Изучение числительных и множеств предметов ведёт к усвоению счётной деятельности.
(Слайд 23) Вычислительная деятельность – это деятельность с абстрактными числами, осуществляемая посредством сложения и вычитания. Простое называние числительных не будет называться счётной деятельностью. Система вычислительных действий формируется на основе количественных знаний.
(Слайд 24) Величина – это качество и свойство предмета, с помощью которого мы сравниваем предметы друг с другом и устанавливаем количественную характеристику сравниваемых предметов.
Величина обладает 3 свойствами:
1) сравнимость, осуществляемая:
- наложением,
- приложением,
- измерением с помощью условной мерки,
- сравнением на глаз.
2) относительность – зависит от предмета, с которым мы сравниваем, от расстояния, на которое мы сравниваем, от расположения в пространстве.
3) изменчивость. Величина тесно связана с размером. А размер является свойством изменчивости величины.
Каждый предмет имеет своё родовое предназначение. Он может изменять свои размеры, не меняя своей сущности.
Слайд 25
Геометрическая фигура (слайд)
Фигуры бывают плоские (круг, квадрат, треугольник, многоугольник) и пространственные (шар, куб, параллелепипед, конус., которые ещё называют геометрическими телами.
Геометрическое тело – это замкнутая часть пространства, ограниченная плоскими и кривыми поверхностями.
Что же такое геометрическая ФОРМА?
Форма – это очертание, наружный вид предмета.
Форма (лат. forma - форма, внешний вид) – взаимное расположение границ (контуров) предмета, объекта, а так же взаимное расположение точек линии.
(Слайд 26) Время – это философское понятие, которое характеризуется сменой событий и явлений и длительностью их бытия.
Время имеет свойства:
- текучесть (время не остановить)
- необратимость и неповторимость
- длительность.
(Слайд 27) Пространство - это такое качество, с помощью которого устанавливаются отношения типа окрестностей и расстояния.
Ориентировка в пространстве предполагает ориентировку на себе, от себя, от других объектов, ориентировку на плоскости и ориентировку
(Слайд28)
К занятиям необходимо тщательно готовиться.
Материала должно быть (Слайд 29)
(Слайд 30) Речь и воспитателя, и ребёнка должна быть точной, краткой, чёткой, ясной (меньше “воды”). В этом случае занятие проходит быстро и интересно.
По мере овладения детьми теми или иными навыками, возрастает роль словесных указаний. Воспитатель учит детей ДЕЙСТВОВАТЬ, но необходимо при этом ПРОГОВАРИВАТЬ действия.
Дети должны говорить, ЧТО и КАК они делают.
Дети старшего возраста должны приучаться планировать свои действия в устной форме
Очень важно учить детей слушать ответы товарищей, и при необходимости уточнять, дополнять, исправлять
.
Практическая часть (слайды 31-38)